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ABSTRACT Inverter air conditioners (IACs) with considerable total capacity and fast response speed are 
ideal demand response resources, which are of significant potential to provide reserve capacity for the 
power system frequency regulation. However, due to the complexity and implicitness of the frequency 
response models, it is difficult to formulate the optimization problem considering frequency dynamics to 
allocate reserve capacity precisely. In this paper, a data-driven method is proposed for reserve allocation 
with the frequency security constraint considering IACs. Firstly, the equivalent frequency response model 
of aggregated IACs is developed considering electrical-thermal characteristics and then incorporated into 
the frequency regulation framework of power systems along with conventional generators. Then, 
simulations are implemented to generate massive reserve samples with deterministic frequency security 
labels. Later, a support vector machine (SVM) based frequency security classifier is trained to convert the 
implicit frequency security constraint into polynomials and reshape the reserve allocation problem into a 
solvable general quadratically constrained quadratic program (QCQP). Finally, a heuristic Suggest-and-
Improve (SI) method is adopted to deal with the nonconvex QCQP of interest. It is demonstrated by 
numerical studies that the proposed data-driven method enables power systems to operate closer to the 
frequency security boundaries and thus achieve lower costs. 

INDEX TERMS reserve allocation, frequency security constraint, inverter air conditioner, classifier, data-
driven 

I. INTRODUCTION 

Frequency stabilization is vital for the security and reliability 
of power system operation. The large frequency deviation 
may result in generator cascade tripping and is one of the 
main causes of power system blackout [1]. The power system 
frequency is directly affected by the power generation and 
demand [2], which tends to rise when power generation is 
larger than demand, and fall when the generation is 
insufficient. Due to the fluctuations of the power supply and 
demand, the power imbalance cannot be avoided completely 
in power systems. Therefore, the frequency regulation, 
including primary frequency regulation (PFR) and secondary 
frequency regulation (SFR), is widely adopted to maintain 
the stability of power systems [3]. 

Reserve allocation is one of the main issues in the 
frequency regulation. The frequency dynamics are seldom 

considered in previous researches of reserve allocation for 
PFR and SFR, which focus more on the power balance of the 
systems [4]. Recently, the power system frequency stability 
has been greatly threatened by the increasing penetration of 
renewable energies [5] and more researches have followed 
the reserve allocation considering the frequency dynamics 
with interest. Generally, the frequency response model is 
fundamental to investigate the frequency dynamics. In [6], 
the PFR and SFR models are formulated based on the swing 
equations. In [7], an adaptive frequency response model is 
proposed, which is integrated with the load shedding scheme. 
In [8], an adaptive multiple-machine frequency response 
model is presented incorporating the governor response.  

Due to the high nonlinearity and complexity of frequency 
response models, the frequency security constraint associated 
with frequency dynamics cannot be incorporated directly in 
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the power system reserve allocation problem. In [9], 
linearization is performed to simplify the generation 
frequency dynamics, which is relatively inaccurate. In [10], 
the sufficient condition for frequency security is proposed as 
an affine constraint of the unit commitment problem, which 
is a conservative estimation and may lead to an 
overestimated reserve requirement. In [11], the piece-wise 
linearization is utilized to transform the frequency limit into a 
linear arithmetic equation, whose complexity increases 
greatly with subject to the number of system components. 

Recently, demand side resources have been widely 
considered to have the potential for power system frequency 
regulation [12, 13], among which, the inverter air 
conditioners (IACs) are most concerned. The reasons are as 
follows: 1) Air conditioning (AC) is one of the top power-
consuming appliances [14], and most of the newly installed 
ACs are IACs [15]; 2) IACs can adjust the input power very 
quickly [16]. Moreover, short time adjustment of IAC power 
has little effect on users, relatively [17]. As IACs are 
considered as an ideal demand response resource, it is 
significant to consider the IACs in power system frequency 
regulation. In [18], the IACs are modeled as a thermal battery. 
In [19], the equivalent frequency response model of IACs has 
been presented including equivalent transfer functions, 
control parameters, and evaluation criteria. In [20], the IACs 
are combined with the conventional generator model for 
frequency regulation service. However, in these existing 
studies, the response characteristics of IACs are mainly 
supported by simulation, which have not been integrated into 
the reserve allocation optimization problem due to the 
complexity of the model of IACs.  

Machine learning classifier (MLC) is widely utilized [21] 
due to its attractive model-free advantage, which has been 
successfully applied in power system studies such as 
component fault diagnosis, load forecasting, power quality 
evaluation and so on [22-24]. From the perspective of 
classification, whether the frequency security constraint is 
satisfied can be considered as a binary problem. Thus, MLC 
does have the possibility to be applied to deal with the 
implicitness of power system frequency security constraint, 
which has not been reported yet. 

In this paper, a data-driven method for reserve allocation 
with frequency security constraint considering IACs has 
been proposed. Firstly, the equivalent frequency response 
model of IACs is presented and integrated into the power 
system model. Then, with the utilization of a machine 
learning frequency security classifier (MLFSC) based on 
support vector machine (SVM), the reserve allocation 
problem between IACs and conventional generators 
considering frequency security constraint is converted to a 
general quadratically constrained quadratic program 
(QCQP) [25]. The general QCQP is solved by the heuristic 
Suggest-and-Improve (SI) method. The framework of this 
paper is illustrated in Fig. 1. 

 

FIGURE 1.  Framework of the proposed data-driven power system 
reserve allocation 

 
II.  MODELLING OF POWER SYSTEM FREQUENCY 
RESPONSE INTEGRATED WITH IACS 

In this section, the model for power system frequency 
response is introduced firstly. Then, the equivalent frequency 
response model of IACs is presented. Finally, the aggregated 
model of IACs is integrated into the power system frequency 
response framework. Note that all the models in this part are 
constructed in the frequency domain. 

A. POWER SYSTEM FREQUENCY RESPONSE MODEL 

The classical frequency response model participated by m 
conventional generators is illustrated in Fig. 2 [6]. 

 

FIGURE 2.  Classical power system frequency response model 

 

In Fig. 2, the input P  is the power imbalance of the 

power system; the output f  is the corresponding frequency 

deviation considering the frequency regulation. H  is the 
equivalent system inertia and D is the load-damping rate. 
The frequency regulation provided by the conventional 

generator i  is illustrated in the dashed line box. iR  and i
GT  

are the governor speed regulation and time constant of 

generator i , respectively. i
CHT  and i

RHT  are the steam chest 

time and reheat turbine time constants of generator i , 
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respectively. i
HPF  is the high-pressure power fraction of 

reheat turbine of generator i . ( )i
GSat x  is a saturation block 

representing the reserve capacity i
GR  of generator i . It is 

defined as: 
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,

i
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G i i
G G

x x R
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R x R

  
 


  (1) 

B. EQUIVALENT FREQUENCY RESPONSE MODEL OF 
IACS 
The IACs have large regulation capacity and can be regard 
as an important resource to maintain the power system 
frequency stability [20]. The equivalent frequency response 
model of an IAC can be constructed based on its thermal 
and electrical models.  

The thermal model of an IAC is built based on the 
modeling of the room temperature deviation [26]: 

 ( ) ( ) ( )room room A room room ACC V T s Q s Q s     (2) 

 ( ) [ ( ) ( )]room r out roomQ s H T s T s    (3) 

where roomC  and roomV  are the room thermal mass and room 

volume, respectively; A  is the density of the air; roomQ  and 

ACQ  are the room heat gain and the refrigerating capacity of 

the IAC, respectively; outT  and roomT  are the outdoor and 

room temperature, respectively; rH  is the equivalent thermal 

conductance between the room and the outdoor air. 
IACs can adjust the operating frequency in order to control 

their operating power. And the electrical model of an IAC is 
constructed based on this feature [17]: 

 ( ) ( )
1
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where P  and Q  are the control parameters of the IAC; 

ACf  and ACP  are the operating frequency and operating 

power, respectively; cT  is the compressor time constant of 

the IAC; cP  and cQ  are the baseline operating power and 

refrigerating capacity, respectively. 
The mechanism for an IAC to participate in the power 

system frequency response is to adjust its operating 
frequency based on the system frequency deviation, so that 
its operating power is changed correspondingly. The 
relationship between the IAC operating frequency and the 
system frequency can be obtained by [19]: 

 ( ) ( ) ( )( ( ) ( ))AC room setf s A f s C s T s T s        (6) 

 ( )C s
s


    (7) 

where A  is the control coefficient that is analogous to the 

1/ R  of generators; ( )C s  is the temperature controller of 

IACs, which is a proportional-integral (PI) controller as 

illustrated in (7); setT  is the IAC set temperature. The 

operating frequency of an IAC is determined jointly by the 
system frequency and the deviation of room and set 
temperature. 

Based on the thermal and electrical models represented by 
(1) – (7), the response of the operating power of IACs to the 
power system frequency deviation can be obtained by: 

 1 2( ) ( ) ( )ACP s F s F s     (8) 
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It can be seen from (8) – (10) that the IAC operating 
power is affected by the system frequency, the room 
temperature, and the set temperature. As the primary 
frequency response is implemented within seconds [6], it is 
reasonable to assume that the room temperature and set 
temperature remain constant during this process. 
Consequently, (8) – (10) can be simplified as follows: 
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It can be seen that (11) – (13) exactly constitute the 
equivalent frequency response model of a single IAC. 

Due to the spreading demand response, more IACs 
especially the central types for commercial or factory 
buildings have been participating in the power system 
operation control. Such IACs are configured with specific 
control programs and can be connected to the wireless 
network, so as to be monitored and remotely controlled. 
The manufacturers accept or proactively promote such 
programs, and agree to disclose the necessary IAC 
parameters, by which they can increase the added values 
and popularity of their products and expand the sales 
volumes [27, 28]. In some particular cases, the 
manufacturers directly participate in the demand response 
projects and share the incomes with the load aggregators. 
This paper is based on the above scenario, where the IAC 
manufacturers are associated with the demand response 
projects and the necessary information about the equipment 
are available. 

C. POWER SYSTEM FREQUENCY RESPONSE MODEL 
WITH AGGREGATED IACS 
The operating power of a single IAC has no significance for 
a realistic power system. The response of IACs only makes 
sense with the simultaneous participation of multiple ones. 
Considering the large quantity of existing IACs (like tens of 
thousands) and their non-uniform parameters, the clustering 
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method is utilized in this section to avoid the curse of 
dimensionality. 

Specifically, the k-means clustering algorithm [29] is 
utilized to cluster massive IACs. Assume that the IACs are of 

different cT  and A . Then the dataset to be clustered is 
1 1 2 2{( , ), ( , ), , ( , )}d d

c c cT A T A T A  where i
cT  and iA  are the 

corresponding parameters of IAC i  and d  is the total IACs 

number. 1 1 2 2{( , ), ( , ), , ( , )}n n
c c cT A T A T A     C  is the cluster 

centers, which can be calculated by: 
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where n is the number of clusters and ( ) ( )( , )i i
cT A  represents 

the cluster centroid that ( , )i i
cT A  belongs to.  

 

FIGURE 3.  Power system frequency response model integrated with 
IACs and conventional generators 

 
The IACs are divided into n aggregated ones with the 

centroid parameters C . Then the power system frequency 
response model considering the demand response of IACs 
can be shown in Fig. 3, where the aggregated IAC can be 
considered as a kind of Virtual Power Plants (VPPs) [30]. 

 
III.  DATA-DRIVEN RESERVE ALLOCATION WITH 
FREQUENCY SECURITY CONSTRAINT 

A.  PROBLEM DESCRIPTION 

The main issue of primary frequency regulation is the 
allocation of power system reserves. Note that the response 
of IACs is faster than conventional generators due to the 
smaller time constant [19]. The utilization of IAC reserve can 
naturally restrain the frequency deviation significantly, while 
the reserves of IACs are relatively expensive than those of 
conventional generators in many circumstances. Therefore, 
the allocation of reserves provided by IACs and generators is 
indeed an optimization problem, where the frequency 
security constraint and the overall reserve cost should be 
considered simultaneously.  

The objective of the allocation problem fitting the 
established frequency regulation framework in Fig. 3 is 
formulated as follows: 

 
,

min  
G AC

T T
G G AC AC

R R
C R C R   (15) 

where GC  and ACC  are the reserve price vectors of 

generators and aggregated IACs, respectively; GR  and ACR  

are the reserve capacity of generators and aggregated IACs, 
respectively. 

The maximum allowed frequency deviation maxf is 

utilized to ensure the frequency security as illustrated in Fig. 
4. The system reserve allocation scheme should meet the 
security requirement that the maximum frequency deviation 

caused by a specific power imbalance 0P  is within the 

threshold maxf . Therefore the frequency security constraint 

can be written as follows: 

 0 maxmin[ ( , , )]G ACFR P R R f      (16) 

where ( )FR   is the system frequency response model. 

However, the frequency security constraint in (16) is 
implicit due to the nonlinear and complex frequency 
response models as illustrated in Fig. 3, which deters it from 
being integrated into a solvable optimization problem. In 
order to deal with the difficulty, the MLFSC is utilized in 
next section to reconstruct the frequency security constraint 
in a data-driven way. 

In addition, the allowed range of the reserve capacity of 
generators and IACs, as well as the system power flow, 
should be considered in the reserve allocation problem: 

 min max
G G GR R R    (17) 

 min max
AC AC ACR R R    (18) 

 
FIGURE 4. Security constraint in terms of the maximum allowed 
frequency deviation 
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where min
GR  and max

GR  are the minimum and maximum 

allowed reserves of generators, respectively; min
ACR  and max

ACR  

are the minimum and maximum allowed reserves of IACs, 
respectively; T  is the power transmission distribution factor 

(PTDF) and A  is the adjacency matrix; maxF  is the power 

flow threshold. 

B.  DATA-DRIVEN APPROXIMATION OF FREQUENCY 
SECURITY CONSTRAINT 
In this paper, the MLFSC is trained to judge whether the 

system frequency deviation violates the maxf . Firstly, the 

feature vector x for the MLFSC is: 

 1 2 1 2( , , , , , , , , )m n
G G G AC AC ACx P R R R R R R      (20) 

where i
GR  and j

ACR  are the reserve capacities of generator i 

and aggregated IAC j, respectively; m and n are the numbers 
of generators and aggregated IACs, respectively. The training 

dataset { , }x y  is composed of multiple feature vectors along 

with their labels:  

 1 2{ , , , }kx x xx    (21) 

 1 2{ , , , }ky y yy    (22) 
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1, min( ( ))
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FR x f
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As illustrated in Fig. 5, the feature vectors are generated 
randomly, and the corresponding labels are provided by 
massive simulation results performed on the power system 
frequency response model in Fig. 3: 

 

FIGURE 5. Generation of the training dataset 

 
Later the MLFSC is established with SVM. The main idea 

is to find a hyperplane represented by parameters { , }w b  to 

separate the data with different labels. With the obtained 
hyperplane, we can get the label of any new feature vector by 
judging which side of the hyperplane it is located in. With 

the training dataset { , }x y , the SVM can be trained by 

solving the following optimization problem [21]: 
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1
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2
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i
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w C





    (24) 

 . .  ,   [ ( ) ] 1T
i i is t i y w x b       (25) 

 0i    (26) 

where ( )  is a mapping from the feature space to a new 

space, which is of great significance to improve the 
performance of SVM [21].   and C  are slack variables and 
the corresponding cost parameters utilized to penalize feature 
vectors that are misclassified or too close to the hyperplane.  

Assume that *  is the optimal Lagrange multipliers 

associated with (25). It can be obtained by solving the 
Lagrange dual problem of the original problem (24) – (26) 
[31]. Then the parameters of the optimal hyperplane can be 
calculated by: 

 
* *

1

k

i i i
i

w y x


    (27) 

 
* *

1

( )
k

j i i i j
i

b y y x x


     (28) 

where jy  is the label of any point that satisfies 
*0 j C  .  

With the optimal hyperplane, the frequency security 
constraint (16) can be converted by the trained MLFSC into 
the following form: 

 
* *

1

( , ) + 0
k

i i i
i

y K x x b 


    (29) 

 (1) 0x P    (30) 

where (1)x  represents the first element of x  ;   is the shift 

coefficient; ( , )iK x x  is the kernel function of the mapping 

( )   that satisfies: 

 ( , ) ( ) ( )i iK x x x x     (31) 

It’s clear that the kernel function represents the mapping 
( )   implicitly in the form of vector inner products. The 

polynomial kernel function is a widely used kernel function 
[21] which is adopted in this paper: 

 2
0 1( , ) ( )i iK x x a x x a     (32) 

where 0a  and 1a  are the polynomial kernel coefficients. It 

can be seen from (29) and (32) that the original frequency 
security constraint (16) is converted into a quadratic 
constraint. 

As can be seen, the adoption of polynomial kernel function 
is a necessary step to enable the general QCQP formulation. 
Therefore, it is utilized in the SVM model instead of the 
radial basis function (RBF) [21] or other kernel functions.  

C.  SUGGEST-AND-IMPROVE METHOD FOR QCQP  

The reserve allocation QCQP is nonconvex because iy  in 

(29) is not ensured to be positive. Consequently, the global 
optima the problem cannot be solved by the general 
polynomial-time method for convex QCQP [32]. In this 
paper, the heuristic SI method [33] is utilized to deal with the 
nonconvex QCQP of interest.  

The main idea of the SI method is to find a candidate 
which is the lower bound of the original nonconvex QCQP 
(Suggest procedure) and shift the candidate point to the 
approximated optima (Improve procedure). 
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1)  SUGGEST PROCEDURE BY SEMIDEFINITE 
RELAXATION  

In the Suggest procedure, semidefinite relaxation (SDR) is 
utilized to relax the problem and solve it to get the lower 
bound of the original problem. We first introduce a new 
variable S  and rewrite (29) as: 

 ( ) 0TPS q x r  tr   (33) 

 TS xx   (34) 

 
* 2

0
1

k
T

i i i i
i

P y a x x


    (35) 

 
*

0 1
1

2
k

i i i
i

q y a a x


    (36) 

 
* 2 *

1
1

k

i i
i

r y a b 


     (37) 

where tr() represents the trace of a matrix. Note that with the 
reformulated constraints above, all the objective and 
constraints are convex except (34). In order to accomplish a 
convex relaxation, (34) is substituted with: 

 TS xx   (38) 

 
( 1) 0

( 1) 0

T
r

c

S P x

S P x

 

 
  (39) 

where ( 1)rS  and ( 1)cS  are the first row and first column of S , 

respectively. 
Due to the convexity, the relaxed problem can be solved 

easily. Here, the candidate in the Suggest procedure is 
denoted as the solution x . 

2)  IMPROVE PROCEDURE BY COORDINATE DESCENT 
The first step of the Improve procedure is to find a feasible 
point of the original nonconvex QCQP based on the 
candidate x  obtained in Suggest procedure. We iterate each 

element ( )jx  of x  to solve the following problem: 

 ( ),
min  

, ( )

jt x

i

t

i f x t 


  (40) 

where ( ) 0if x   represents all the constraints of the reserve 

allocation problem. It is obvious that when 0t  , the 
feasible point is obtained and the iteration is terminated. As 
all elements are fixed except one, the problem (40) can be 
easily solved by the bisection method proposed in [34]. 

The second step of Improve procedure is to improve the 
solution. We iterate each element of the feasible point to 
solve the nonconvex QCQP until no more improvements can 
be achieved. Similarly, as only one element is variable during 
the iteration, the nonconvex QCQP can be solved by the 
bisection method [34]. 

The pseudocodes of the SI method are given in Table I. 

IV. CASE STUDIES 
In this section, a realistic 12-bus system in Haining, China 
[35] is utilized to verify the proposed data-driven reserve 
allocation method, whose topology is illustrated in Fig. 6. 
The total load of the system is 405 MW. Besides 4 

conventional generators, 5104 commercial IACs in the 
testing system are considered to participate in the frequency 

regulation. CHT  of the four generators are 0.43s, 0.52s, 0.51s 

and 0.59s, respectively. RHT  of the four generators are 4.9s, 

4.8s, 5.1s, 4.8s, respectively. Other parameters of the 
generators are listed in Fig. 6.   

A.  AGGREGATION OF IACS 
Considering the fact that most of the thermal characteristics 
of the commercial IACs in the same testing area are roughly 

homogeneous, two parameters named cT  and A are utilized 

to identify the IACs. The widely utilized elbow method is 
introduced to determine the cluster number in the k-means 
algorithm [29, 36], which coordinates the clustering accuracy 
with the computation efficiency. As indicated in Fig. 7, the 
objective value shown in (14) which indicates the error of the 
clustering, drops with the increase of the number of clusters 
while the dropping speed gradually slows down. Specifically, 
the value of the objective has become already quite low since 
the number of clusters reaches 4. And further significant 
decrease of the objective value cannot be achieved by 

TABLE I 
PSEUDOCODES OF THE SUGGEST-IMPROVE METHOD 

Suggest procedure 
Step1: Relax the QCQP with a new variable S to a convex problem.   

Step2: Output candidate x  Solution of the above convex 

problem 
Improve procedure 

Step1: Find a feasible point based on x : 

Input x  

Repeat 

for 1,2, ,j m n    

( )jx  Solution of (40) 

Until 0t    

Output x  
Step2: Improve the feasible point: 

Input kx  x , e  

Repeat 

for 1,2, ,j m n    
1

( )
k
jx   Solution of the original QCQP 

k  1k   

Until 
1k kx x e     

Output 1kx   as the approximated optimal solution  

 

FIGURE 6.  Topology of the testing system. 
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adopting more clusters. Therefore, the number of clusters is 
selected as 4 to ensure the satisfactory accuracy and 
considerable computation efficiency of the k-means 
simultaneously.  The aggregation result of the IACs with n = 
4 is presented in Fig. 8, where the black dots represent the 
four cluster centroids. Note that the parameters of the IACs 
in Fig. 8 are normalized to [0, 1] for better clustering 
performance in advance by the following min-max 
normalization: 

 
min( )

max( ) min( )

i
i C

CN

T
T





c

c c

T

T T
  (41) 

 
min( )

max( ) min( )

i
i
N

A
A






A

A A
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where i
CNT  and i

NA  are the normalized i
CT  and iA , 

respectively; cT  and A  are the sets of cT  and A to be 

clustered, respectively.  

 

FIGURE 8.  IAC aggregation result by k-means clustering 

B.  RESERVE ALLOCATION RESULTS 
In this section, the numerical results of reserve allocation are 

studied. The maximum allowed frequency deviation maxf  is 

set as 0.4 Hz. The power imbalance 0P  is 81 MW (20% of 

the total load). In order to build the training dataset for the 

MLFSC, 12000 feature vectors are randomly generated 
subject to Gaussian distributions. The labels of feature 
vectors are obtained from frequency dynamic simulations. 
The result from cross-validation [37] indicates that the 
adoption of polynomial kernel function can achieve higher 
accuracy (98.91%) than that of RBF (94.17%).  

The performance of the utilized SI method is compared 
with the commercial Gurobi solver in terms of the QCQP 
presented in Section III. Table II illustrates the obtained 
objectives and CPU time of the two methods. It is indicated 
that the reserve cost obtained from the SI method are slightly 
lower than that of the Gurobi solver. Besides, the CPU 
calculation time by the SI method is shorter than that by 
Gurobi solver, which proves that the SI method are more 
efficient than the latter.   

TABLE II 
 PERFORMANCES OF THE SI AND THE GUROBI SOLVER   

 Obtained objective($) CPU (ms) 

SI method 633.48 78.5 

Gurobi solver 633.76 99.2 

In order to verify the proposed data-driven method better, 
the numerical comparison with the state-of-the-art method 
presented in [9] is also implemented. Specifically, the state-
of-the-art or the benchmark method linearizes the frequency 
response of generators and ensures the frequency security 

 
FIGURE 7.  Objective value of the k-means clustering with number of 
clusters 

 

FIGURE 9.  Maximum frequency deviations and the overall costs 
achieved by the two methods 

 

FIGURE 10.  Reserve allocation results obtained from the two 
methods 
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constraint by proposing its sufficient condition, which may 
lead to rather conservative results. The reserve allocation 
results are illustrated in Fig. 9 and Fig. 10. 

As can be seen, the proposed data-driven method is 
superior to the benchmark method, because the benchmark 
method is obviously too conservative. Specifically, it is 
shown in Fig. 9 that the maximum frequency deviation 

obtained by the benchmark method is more deviated to maxf  

than that of the data-driven method. It indicates that the 
benchmark method tends to overestimate the impact of the 
power imbalance on the frequency deviation. The total cost 
obtained from the data-driven method is only 75% of that of 
the benchmark method.  

It can be seen from Fig. 10 that the proposed data-driven 
method tends to allocate less reserve to IACs. The reason is 
that IACs are of faster response speed but higher reserve cost 
in this testing system, which are prone to be more utilized in 
conservative schemes. Due to the more precise estimation of 
frequency response results, the proposed data-driven method 
enables power system to operate closer to frequency security 
boundary and thus achieves lower cost. It can be concluded 
from the comparisons that the reserve allocation suggested 
by the data-driven method is more optimal than that of the 
benchmark method. 

In order to demonstrate the adaptability of the proposed 
method, the maximum frequency deviations under different 
power imbalances are shown in Fig. 11. It is clear that with 
the proposed method, the frequency security constraints can 
be satisfied quite well. Specifically, the maximum frequency 
nadir can be kept close to but within the threshold of 0.4 Hz 

with the increase of 0P . In addition, to illustrate the impact 

of IACs on the frequency security, the system in which the 
IACs are excluded from the frequency regulation is also 
studied. Its maximum frequency deviation values are also 
shown in Fig. 11. The result shows that there are no solutions 
satisfying the frequency security constraint in the 

investigating horizon of 0P . With the reserve completely 

provided by the conventional generators, the system 

frequency nadir deviates greatly from maxf  and rises 

significantly with the increase of 0P .     

 

FIGURE 11.  Maximum frequency deviation with different power 
imbalances 

V. CONCLUSION 
In this paper, a data-driven reserve allocation method to deal 
with implicit frequency security constraint is proposed 
considering IACs. The equivalent frequency model of 
aggregated IACs is established and incorporated into power 
system frequency regulation framework. The reserve 
allocation is then converted by the MLFSC into a solvable 
nonconvex QCQP, which is handled by a heuristic SI method. 
The proposed method is data-driven as the MLFSC is trained 
by the labeled dataset of frequency dynamics obtained from 
the frequency simulations. Compared with the state-of-the-art 
method, the data-driven method estimates the system 
frequency dynamics more precisely and obtains lower 
reserve allocation cost. It can also be concluded that the 
reserves provided by IACs can significantly improve the 
frequency security of power system.   

Considering the participation of increasing demand-side 
resources in power system operation, the proposed method is 
of great significance to improve model-free frequency 
control and handle big data in smart grids. However, other 
kinds of flexible resources such as the electric vehicles (EV) 
are also feasible to participate in power system frequency 
regulation [38, 39]. In the future work, a more general 
framework of frequency regulation is to be studied by 
integrating EVs and other flexible resources. Moreover, 
advanced machine learning models besides SVM and state-
of-the-art optimization algorithms are worth trying in the 
proposed framework including the MLFSC for better 
performance. 
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